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Abstract – In recent years, particularly by increasing the importance of a missile defense technology and its 

application in various fields, many scientists have been attracted to this position. The actual model of a missile system 

is nonlinear, and the dynamical behaviors of nonlinear control systems are related to changes in the operating range. 

In this paper at first we used the Gain scheduling controller to control the flight model and then by applying the linear 

quadratic regulator (LQR), which is an optimal control method, the system response is studied. Because of high 

flexibility of quadratic function, use of the LQR has been increased. Here after applying the optimization method we 

found the under shoot in the result of system missed, thus the system stability is guaranteed.  
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INTRODUCTION  

This is a well-known fact that the applied Engineering 

Systems are nonlinear and the dynamic behavior of these 

control systems changes with the operating range. A 

design method for controlling this behavior is called Gain 

scheduling. Recently, many studies have been done 

evaluating the operation of Gain scheduling controller on 

linear and nonlinear systems and several studies have 

been drawn to gain scheduling function in flight control 

problems. According to this, Gain scheduling theory can 

be successful designing method in engineering branches. 

Despite the common use of gain scheduling theory, there 

are some confinements. For example, one or more 

external variables indicate the existence situation, while 

scheduled gain depends to the slow values of these 

variables. The studies in [5] express that gain scheduling 

is necessarily limited to slow variation in scheduling 

variables. This limitation is emerged in simulation step 

and [4], [5] justify this limitation with 5 math formulas. 

In this paper, to design an imaginary missile model the 

gain scheduling technique is used. This is the same 

missile studies in [2] and [3], but using type-1 servo 

system instead of H 
 controller in [2]. After word, 

carrying out LQR control as optimum controller method, 

the response of system is verified. Because of high 

flexibility of quadratic function, use of  the LQR has been 

increased. That discussed in [1].      

In continues we discussed the missile flight control model 

in Section 2 Gain scheduling controller design in Section 

3 and also LQR control in Section 4. 

MISSILE FLIGHT CONTROL MODEL 
When the missile is flying with an angle of attack ()   lift 

was increased. Perhaps this lift can show acting in the 

Centers of pressure. This missile close to position of 

Centers of pressure can be statically stable or unstable. 

This object studies in [2].  In this paper, the problem that 

we focus on is that of controlling this missile to track 

commanded normal acceleration by generating a tail fin 

defection angle. The missile that we required to design 

will be accepted a normal acceleration from some external 

guidance systems and we should know it some of the 

missile’s variables measured by gyros and 

accelerometers. A Missile model and the missile-air frame 

control model shown in Fig. 1 and Fig. 2, respectively. 

 

 
Fig. 1 - A missile model 
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Fig. 2 - Missile flight control model 

 

A. Mathematical description of Missile model 

A missile flight control model using in this paper has 

been illustrated in Fig. 3. 

 

Fig. 3 - The block diagram of missile model. 
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Variables 

(t) =angle of attack, range 20 20   . 

(t)M =Mach number, range 2 4M  . 
(t)q =pitch rate. 

(t)c =command tail fin deflection angle. 

(t) =actual tail fin deflection. 

(t)c =command normal acceleration. 

 

(t)z =actual normal acceleration. 

Simulation Variable 

    For simulation purposes, a state equation for the   

Mach number is defined as follows: 
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GAIN SCHEDULING CONTROLLER DESIGN 

In this section, we are designing missile flight control 

system with gain scheduling techniques and also we will 

be discussed about it. By using gain scheduling controller, 

missile design process is divided into the 4 following 

step: 

1. Choosing the equilibrium. 

2. Linearization system around each equilibrium point. 

3. Linear controller design. 

4. Scheduling the set of linear controllers. 

 
A. Choosing the equilibrium 

To determine the equilibrium points of this system 

according to definition, we putted (x, u, y) 0f  . Thus, 

set of the operating points are shown as follows: 
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B. Linearization system around each equilibrium point 

To linearize the nonlinear system, we use the Taylor 

series expansion of f and g around an equilibrium state 

and withdraw ling the high-order term of order greater 

than2. Then by using the Jacobin matrices values of 

A( ,M),B( ,M)   and ( ,M)C    are calculated as 
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C.  Linear controller design 

The design of the controller, for controlling a nonlinear 

system, it is necessary that, the controller design process 

is divided into two steps: At first for linearization 

nonlinear system, we should design several local 

controllers around each equilibrium points. In second 

step, we should schedule and interpolated gain of the local 

designated. In continues, linear controller designated 

process was explained. To design this controller, the 

nonlinear system used in part 3.2 is considered. Thus, it 

should be designed around several operating points for 

linearized systems. Here we have three operating points 

(10 ,2),(10 ,3)  and (10 ,4)  for ( ,M) .The system is 

mostly on penetration of the match number as in [2]. 

Thus, choosing an attack angle 10  for each three match 

numbers seems to be a wise compatibility and this angle 

states the average point of operating range. The first aim 

of this step is to fix the match number that stabilized the 

controller in all attack angles between 20 20   . 

While the symmetric property of system makes it possible 

to verify the system under attack angles between 

0 20  . Type-1 servo system that is on the basis of 

pole placement is used to design a desirable controller. As 

some state variables are not available, observer state is 

placed in this kind of controller systems. This is described 

as follows:  
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Here, gain K from the pole placement design and gain L 

from the state observer have been calculated. We have the 

step response of liner closed loop system for three 

constant operating points, in Fig. 4. Which is indicates 

that, output of the system follows the step response with 

constant time less than 25 S. 

     In the following, in Fig. 5 we presented the frequency 

response of the open loop system in the same operation 

range that shown for each 300 secrad  frequency all 

amounts should be lower than -30 dB, considering the 

following figures. 

D.  Scheduling the set of linear controllers 

Essentially, gain scheduling technique is divided into two 

stages: First, design a local controller based on 

linearization nonlinear system, around the each 
equilibrium points, which are described in the previous 

Section. 

 

Fig. 4 - Step response of the closed-loop system for 10   

 

 

 

Fig. 5 - Frequency response of the open loop system for 10   

 

    Local controllers were designed in three operation 

point’s (( ,M) ((10 ,2),(10 ,3),(10 ,4))  .Each 

equilibrium point, gives a special gain that makes the 

controller capable of satisfying the system requirements 

locally around each design point. The second step, to be 

discussed in this chapter, requires interpolating, or 

scheduling, the gain of the linear designs to obtain a 

nonlinear controller. The three specified controller are 

rewritten as follow tables: 

Table 1 

The gain from the local controller at fixed Mach number M=2 

At fix Mach number M=2 

KK2=[-5.7137e+00,-4.5613e-01,-4.0079e-01,-1.1296e-03] 

Ki2=6.3689e+01 
KL2=[-7.7941e+02,-7.6420e+04,2.0806e+03,-2.5828e+05] 
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Table 2 

The gain from the local controller at fixed Mach number M=3 

At fix Mach number M=3 

KK3=[-2.2529e+00,-1.7227e-01,-4.0539e-01,-1.1405e-03] 

Ki3=1.4099e+01 
KL3=[-4.0547e+02,-3.9609e+04,9.1918e+02,1.16157e+05] 

 
Table 3 

The gain from the local controller at fixed Mach number M=4 

At fix Mach number M=4 

KK4=[-1.3009e+00,-9.5897e-02,-4.0555e-01,-1.1457e-03] 

Ki4=5.0734e+00 
KL4=[-2.7506e+02,-2.6813e+04,5.1287e-02,-6.6569e+04] 

 

The results of linear controller analysis shows that, gains 

in different constant Mach number can create stable linear 

system on fixed value and in all range of attack angle 

between 0 to 20. Regarding this problem the challenge to 

schedule all gains in different match number values was 

considers this means, the gain can be define is in range 

2≤M≤4. 

LINEAR QUADRATIC REGULATOR (LQR) 

Linear quadratic regulator (LQR) is an optimal control 

which is an optimal control method, the system response 

is studied. Because of high flexibility of quadratic 

function, use of  the LQR has been increased. 

     Quadratic function is defined in LQR as follows: 

0

1 1
(t )Gx(t ) (x Q x u R u)dt
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As the optimization should be consider completely in all 

time ranges and not dedicated to any special time, set 

ft    and  
0t  equals zero. Here, ultimate values of states 

aren’t very significant and goal is to confine the states in 

low values in all times. Thus, the G matrix should be 

zero. According to this, we have the quadratic equation 

like follow: 
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minimizing quadratic function is: 
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 88.1308, 2.6403,54.0717,9.9909lqrK    

As a result, the optimization controller can set the poles of 

closed loop system into the minimum values of the 

quadratic function. 
 

SIMULATION 

The way of our research in this paper is that, we designed 

missile flying controller model with gain scheduling 

controller. After that by adding the LQR we found the 

optimization response for this nonlinear system. We 

consider the following constant values to reach the 

purpose of simulation. For constant Match number 2, 3 

and 4 we simulate the system using gain scheduling 

controller as shown in Fig. 6, and once again by applying 

linear quadratic function (LQR) as shown in Fig. 7.  

 

0(0.7) sK P S mv   

0(0.7)q d yK P S I  

0(0.7)zK P S m  

0(0.7)x aA P SC m  

 

 

Fig. 6 - Step response of closed loop system with pole placement 

controller 
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 Fig. 7 - Step response of closed loop system by applying optimization 

control LQR 

 

The results of the comparison from the above figure 

are that, the optimized system guarantees stability have 

been increased and reason of that conversion the non-

minimal state response to minimal one. 

 

RESULTS AND DISCUSSION 

In this paper, missile designing was discussed using gain 

scheduling and then LQR method was added to system. 

As mentioned before said the gain scheduling is fictional 

in engineering branches, it has some limitation is 

exogenous variables that vary very suddenly. 

     Then the Match number was considered as an 

exogenous variable and the all math definition of the 

missile model was submitted beside the Match number 

state equation (The match number equation is not a proper 

missile system but has a very fundamental role is 

simulation). 

     Then the linear controller designated at first by linear 

systems in three distinct constant operation points and 

also by LTI technique. These controllers can guarantee 

the local performance and nominal stability of system. 

     The frequency response of the open-loop linear system 

indicated that the system value is lower than 30 dB in 300 

rad/sec. 

     Finally linear quadratic regulator was defined and after 

applying above optimization method we found the under 

shoot in the result of system missed, thus the system 

stability is guaranteed. 
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