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Abstract – In this paper an inverted pendulum is modeled firstly by using Euler – Lagrange energy equation 

for stabilization of the pendulum. To control the modeled system, both full-state feedback and Linear 

Quadratic Regulator controller methods are applied and the results are compared. After that, a pre-

compensator is implemented to eliminate the steady-state error. Linear Quadratic Regulator is an optimal 

technique of pole placement method which defines the optimal pole location based on a definite cost 

function. The investigated system develops classical inverted pendulum by forming two moving masses. The 

motion of two masses in the pendulum which slide along the horizontal plane is controllable.  

Keywords: State feedback control, Linear Quadratic Regulator control, Inverted pendulum, Mathematical 

modeling, pre-compensator 
 

O
R

IG
IN

A
L

 A
R

T
IC

L
E

 

R
eceiv

ed
 1

0
 M

ay
. 2

0
1
4
 

A
ccep

ted
 2

0
 A

u
g
. 2

0
1
4
 

 

INTRODUCTION  
 

Inverted pendulum systems by moving a cart along 

a horizontal track are one of the most popular benchmarks 

to demonstrate the control techniques [1]. They are 

unstable and nonlinear systems and can be useful to 

illustrate the concepts in linear control such as the 

stabilization of unstable systems and also in 

demonstrating some of the ideas in nonlinear control. 

Instability of the inverted pendulum makes it in the case 

that it may fall over any time in any direction unless a 

suitable control force is implemented [2]. 

Inverted pendulum systems are highly nonlinear, 

but they can be easily controlled by using linear control 

techniques in an almost vertical position.  If the system is 

controllable, this method gives excellent stability margins 

[3, 4]. In this paper, we will employ two renowned steady 

state methods (FSF and LQR) to control the system and a 

comparison between these two controllers will show the 

proper controller for the inverted pendulum. The 

guaranteed margins in LQR design are 60 degree phase 

margin, infinite gain margin, and -6dB gain reduction 

margin. 

 

MODELING OF INVERTED PENDULUM: 

The inverted pendulum is one of the classical 

problems in the control theory which is a tical benchmark 

for testing control algorithms; the pendulum is connected 

to the pivot on top of the cart. Schematic of the inverted 

pendulum is shown in the Figure below: 

 
Fig.1- Inverted pendulum. 

 

A free body diagram of the system is shown in 

Fig.2, and characterizes the forces and moments with 

implementing Newton’s second law to the motor cart 

yields.  

NFpmc 
 

(1) 

By applying Newton’s second law to the inverted 

pendulum in both (horizontal and vertical) directions.  

       
Fig.2- Free Body Diagram for Cart/Pendulum System 
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Pendulum’s center of mass is balanced in the moments as: 
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Substituting Eq. 2 into Eq. 1 we achieve: 
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By substituting Eq. 2 and 3 into Eq.4 yields: 
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To simplify the equation above: 
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Relationship between force and voltage for the motor cart 

can be written as: 
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Omitting   from Eq.5, p  from Eq. 6, and replacing M, 

L, and the equation for force yields 
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Let us describe the state-vector as below: 
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The system is now modeled. In this step, for 

simplify the equation, it is linearized about the 

equilibrium [0 0 0 0]T. Note that 0 represents the 

pendulum in the vertical position. After linearization, we 

have: 
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By substituting values from Table 1, the linearized system 

yields: 
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By achieving the linear model, we are now ready to 

design a controller to balance the inverted pendulum. 
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TABLE 1 

SYSTEM PARAMETERS FOR CART/PENDULUM SYSTEM 

Parameter Symbol Value Units 

Motor Torque Constant mK
 

0.00767 AmpNm  

Gear-box Ratio Kg
 

3.7 AN
 

Motor Armature Resistance R  
2.6   

Motor Pinion Radius r  0.00635 m  

Cart Mass cm
 

0.455 kg
 

Pendulum Mass pm
 

0.210 kg
 

Rotational Inertia I  
0.00651 2mkg 

 

Half-length of Pendulum l  
0.305 m  

 

Step response for the system is shown below; as it 

can be seen, inverted pendulum has an unstable state at 

the commonplace. In this paper we proposed and 

compared two different methods with control the system.  
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Fig.3- Step response of the inverted pendulum. 

  

Before designing the controller, it is significant to 

verify that the system is controllable; in other words, is it 

possible to drive the state of the system anywhere we like. 

The system can be completely state controllable, if the 

controllability matrix has full rank where the rank of a 

matrix is the number of independent rows. The 

controllability matrix rank is 4 like the columns of the 

system. Since, it is possible to a design a proper controller 

for the system. 

 

FULL STATE FEEDBACK (FSF) 

The closed-loop input-output transfer function in 

state space can be characterized by the equation below: 
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with
NN RtuRtx  )(,)(  . The initial condition 

is )0(x . Then the roots of the characteristic equation 

illustrate the poles of the system. 
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Full state feedback (FSF) is used by a command to 

the input vector ( u ). Consider a matrix sense to the state 

vector: 

xKu 
 

(17) 

 

By substituting the equation above into the state 

space equations, it can be written as: 
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The equation, ))(det( BKAsI   characterizes 

the roots of the FSF system. By comparing the terms of 

this equation with the desired equation, the values of the 

feedback matrix K can be considered which forces the 

closed-loop eigen-values to the pole locations determined 

by the desired characteristic equation; because of that, this 

method is also known as pole placement method [5]. 

 

LINEAR QUADRATIC REGULATOR: 

For the Linear Quadratic Regulator (with zero 

terminal cost), we set 0 , and 

,
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where the requirement that 0L implies that both 

Q and R are positive definite. For the linear plant 

dynamics also, we have 
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0 TBRu  
(24) 

 

Therefore, the systems are perfectly linear, we try a 

connection Px . Appending this into the 


 equation, 

and then using the x equation, and by replacing for u, we 

achieve 

01 


 PPxBPBRQxPxAPAx TT  
(25) 

 

This has to hold for all x; indeed, it is a matrix 

equation, the matrix Riccati equation [6]. The steady-state 

solution can be considered as: 
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01   PBPBRQPAPA TT

 
(26) 

This equation is the matrix algebraic Riccati 

equation (MARE), whose solution P is required to 

calculate the optimal feedback gain K [7]. The equation 

0 TBRu gives the feedback law: 

PxBRu T1  
(27) 

 

The design steps to control system by LQR 

technique: 

1. Select design parameter matrices Q and R  

2. Solve the algebraic Riccati equation for P  

3. Find the optimal value for the feedback by using  

u =-R
-1

B
T
P 

 

 

SIMULATION AND RESULTS 

 

State feedback control: 

In this problem, the poles are characterized in: 

P= {-55.7078,-3.4947 +10.5695i,-3.4947 -10.5695i,-

5.3027 + 0.0000i} 

Letting the considered gain k= [k1 k2 k3 k4] for 

controlling the state feedback, we have: BKA  

Comparing all the coefficient of above equation we 

found: 

 

K=[-447.3448 -122.4159 -288.0091  -56.1644] 

 

Step response for the controlled system is shown below: 
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Fig.4-State space control response for the system  

 

 

 

 

LQR Control: 

 

By letting the 
CCQ  '

: 

 

 Q=[1 0 0 0;0 0 0 0;0 0 1 0;0 0 0 0]; 

 

Different values for the R and the step response of the 

system are shown below: 
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Fig.5-LQR response for R= 0.1 
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Fig.6-LQR response for R=0.033 
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Fig.7-LQR response for R=0.044 
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Fig.8-LQR response for R=0.088 
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Fig.9-LQR response for R=0.090 

 

As it can be seen from the above results, using 

LQR instead of FSF decreases the number of oscillations. 

Utilizing different values of R in LQR achieved different 

results. So it can be concluded that for having a good 

LQR controller, we have to select proper values of Q and 

R.  

 

CONCLUSION 

 

Two different control schemes have been 

implemented that will switch to a stabilizing controller 

when the pendulum is unbalanced. Inverted pendulum is 

one of the renowned unstable models to analyze the 

control techniques. Step response of the system is 

unstable with non-minimum phase zero. Applying state 

space feedback controller illustrated a stable state for the 

system. Provided LQR controller method resulted better 

results rather than the simple state feedback, but makes 

some troublous because of selection of constants of 

controller. Constant of the LQR controller can also be 

adjusted by the heuristic techniques for better results.  
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