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Abstracti In this paper, a new higbrder chaotic system is proposed. This system hasjailibrium point
on center and its specific feature is existence of two large Lyapunov exponents compared to ott
order chaotic systems. In order to prove the existence ofdrigr chaos in this system, criteria such
energy dissipation of th&ystem, instability of equilibrium point, system absorption and Lyapunov expc
of system are used. Investigating the mentioned criteria confirms the existence of chaos in the syst
study. Then, by changing system parameters, different dynamavibrs such as the limit cycle and hig
order chaos can be observed in the system. Finally, using a Linear Quadratic Regulator (LQR) cor
chaotic systembdés stability around equilibriul
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INTRODUCTION

Chaotic systems have attracted the attention of
scientists in various fields in recent years 2]., Chaos
theory explores chaotic dynamical systems. These
systems are dynamical and nonlinear in nature that are
very susceptible to initial conditions; slight changes in the
initial conditions of the system cause many changes in the
future. Behavior of khaotic systems appears to be random,
but there is no need for randomness in creating chaotic
behavior and definite dynamical systems can show
chaotic behavior too. Various methods such as linear and
nonlinear feedback control and adaptive control are used
to analyze the chaotic behavior of these system

The emergence of new mathematical and numerical
tools has played an important role in understanding and
describing the concept of chaos. These tools have been
helpful to detect chaos in many scientific figlsuch as
biology [3], chemistry [4] and engineering applications
[5, 6]. Research on Chaotic systems can be divided into
three general categories: review of new chaotic systems
[7, 8], harmony in chaotic systems [9, 10] and the control
of chaos [11]. Re=arch done in this paper is placed in the
third category. After the first research on the area of chaos
control [12], efforts to control the chaotic systems are
done with three main objectives. The first objective which
is purely classical consists of si@tation of one of the
unstable equilibrium points [1B6].

The second objective is using control strategy to
achieve harmony in the system {19]. The third is to
control the chaotic systems to stabilize unstable periodic
paths in chaotic absorbent9{23]. High-order chaos was
first presented in [24]. Higbrder continuous chaotic

systems have at least four state variables and the special
characteristic of these systems is the existence of two
positive Lyapunov exponents. This feature makes the
dynamc of the system to extend in more than one
direction simultaneously. One of the common methods to
design a higkorder chaotic system is to consider a{ow
order chaotic system with three state variables and adding
a state feedback controller to it and rémgnthe system
coefficients [25, 26]. In this case, the higider chaos is
created in the system.

In this paper, an LQR controller is applied to a
nonlinear system that ensures system stability. The overall
structure of this paper is as follows: In Sentid, after
introducing the dynamics of higbrder chaotic system,
system energy dissipation and the instability of the
equilibrium point are shown to prove chaos in the system.
Then, system absorbent, time response and Lyapunov
exponents of the system drwestigated. In Section 3, the
different dynamical behavior of the system can be
observed by changing one of the system parameters. In
Section 4, system is stabilized around its equilibrium
point using an LQR controller design ar®kction 5
concludes thgaper.

MATERIAL AND METHODS

2- Dynamical equations of tke new highorder
chaotic system

Dynamics equations of the higirder chaotic system
studied above are derived by adding a fourth state
variable and some nonlinear terms to Jowder chaotic
system § presented in [27]. System equations are given in
formula 1
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Where X, y, z and w represent the state variables of the

chaotic system. By choosing the pagers as in (2), the
system shows the behavior of a highler chaotic

system.
a=77,b =1 ¢ & 5
d=4 ,e 8, f =4 (2)
g=1 ,h A, 6k =2-

Following conditions are necessary for the existence
of chaos in a system.

A The
means that the energy of the system should be reducing
and the system must be inclusively stable.

A The system must have
Jacobian matrix calculated in the equilibrium points must
have unstable eigenvalues.

A &m paths should be limited and bounded.

Next, these conditions will be reviewed.

2.1. Checking that if system is dissipative or not
Dynamical systems can be divided into two groups,
conservative and dissipative. One of the necessary
conditions for the x@stence of chaos in a system is that
the system should be dissipative. To check that if system
is dissipative or not, suppose that dynamic equations of
the system are as follows,

ex = (X, %,-, %)

1% = 1006000 %) (3)

0 :
P = 106 %0 %)

First is calculted. If this value is equal to zero then
the system is conservative and if this value is negative
then the system is dissipative. Equation (4) provides the
condition for system (1) to be dissipatigensidering the
parameters in formul2a.
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ConS|der|ng that the above expression is negative,

system (1) is dissipative, though globally stable.
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2.2. Evaluation of instabilty of system equilibrium
point: To calculate thequilibrium point of the systeris
used which in this casonly the equilibriunpoint of the
system will be at Jacobian matrix of the system at
equilibrium point is obtained as follows.

e77 77 0 O

| S8 o0 o0 8 (5)
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Eigenvalues of the Jacobian matrix is as follows.

system mu sng digsipativd i s s iSgstem hag leen ccms_eder(exg yo,z0 W)=

unst a’l

&/, = 12.2454 ©)

1/,=2.2727 +2.212¢

1/5=2.2727 +2.212¢

fr.= 4

According to the sign of the eigenvalues of Jacobian
matrix of the system, it becomes clear that equilibrium
point of the system is saddle point and thus unstable. In
conclusion one can say that the system is locallyabiest

2.3. Absorbent of the highorder chaotic system
Simulating this higkorder chaotic system in MATLAB, a
number of absorbents of this system in wlimensional
and threedimensional space argiven in the form of
Figures land @nitial conditions fo simulation of chaotic
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Figure 2. Absorbentof system in (xz) space
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Figure 3. Absorbentof system in (yz) space
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Figure 5. Absorbent of system in {x-z) space

Figure 6. Absorbentof system in (z-w) space

2.4. Response time of state variables of higirder
chaotic system Figure 7shows the response time of state
variables of the higlorder chaotic sstem. Initial
conditions for simulation are considered as

Figure 7. Responsd¢ime of state variables of the high
order chaotic system

2.5. Evaluation of the Lyapunov exponent of high
order chaotic system Lyapunov exponent vgused in
the year 1892 to control the stability of nonlinear
differential equations. This method allows the study of the
stability of differential equations without actually solving
them. In order to call a system chaotic one must
demonstrate that the s¢gm is highly dependent on the
initial conditions.In other words, if two paths start at the
initial conditions very close to each other, after a short
period of time they diverged exponentially and take a
completely different future. Lyapunov exponent cfies
the dynamic sensitivity of the system to initial conditions.
This quantity specifies the rate of convergence or
divergence of two close paths in phase space. It is a
standard quantity to determine whether a system is
chaotic or not. For example, tiie Lyapunov exponent is

shown by , then

1 If becomes positive then the distance between
two points in the phase space increases exponentially, i.e.
the system moves toward becoming chaotic.

T1f o b e ativemmens cam eogclude that the
system shows stable behavior, in other words, the system
reaches toward steady state.

i represents the boundary case.

Table 1shows dynamic states for a chaotic system
with 4 state variables dependinon the sign of the
Lyapunov exponent [26]. In this table

represents the Lyapunov exponent of the
system.
Table 1.dynamic states of a chaotic system with 4 state
variables depending on Lyapunov expdsen

Dynamic behavior type

Equilibrium point
Limit cycle
Semiperiodic
Chaotic behavior
High-order chaos
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