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Abstract – This contribution addresses forward kinematic solution of modular hybrid manipulator which includes two 

same Stewart mechanism in serial form known as 2-(6UPS) manipulator. First, using geometrical and vectorial 

analysis, mathematical model of kinematic analysis for 2-(6UPS) is extracted. As mapping the length of pods to location 

(orientation and position) of moving mid and upper platforms (forward kinematic) in this specific mechanism is so 

difficult to solve, which it is related to complicated configuration of 2-(6UPS) and highly nonlinear characteristic of 

extracted mathematical model. Therefore, we proposed artificial neural network (ANN) based wavelet analysis to 

resolve forward kinematics of 2-(6UPS). Also, we used wavelet neural network (WNN) to approximate specific 

trajectory in circle path with oscillating amplitude in z direction and spiral path with elliptical base paths for mid and 

upper platforms movement respectively. Comparison between the results of proposed network and closed form solution 

(CFS) of kinematics for 2-(6UPS) shows proper performance of proposed network in less than %1 error.   

Keywords: 2-(6UPS) Manipulators, Stewart Mechanism, Forward Kinematics Analysis, Nonlinear Multivariable 

System, WNN. 
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INTRODUCTION  
 

A hybrid manipulation system is a sequence of 

parallel mechanisms which can overcome the limited 

workspace of parallel mechanism and can provide feature 

of both serial and parallel mechanism. They are able to 

achieve high stiffness and high force-to-weight ratio. The 

hybrid serial-parallel robotic manipulator has attracted the 

attention of many researchers and it also has growing 

applications to robotics, machine tools, positioning 

systems, measurement devices, and so on. It has been 

proved great potential and advantage both closed-loop 

and opened-loop manipulator over the traditional 

manipulator. Many different types of hybrid robots have 

been investigated [1-5]. The characteristics of 6 DOF 

parallel–serial hybrid manipulators which features a 3 

DOF in series actuated module mounted on the moving 

plate of another 3 DOF in parallel actuated manipulator 

with prismatic actuators is studied by Huang et al. [6]. 

Romdhane [7] investigated the hybrid manipulator which 

made of a base and two platforms in series and the motion 

of the mid platform is restricted only to three translations 

and the second platform rotates spherically with respect to 

the mid platform using joint connected the mid platform 

and top platform. Tanio [8] presented a hybrid (parallel 

serial) manipulator consisting of two serially connected 

parallel mechanisms and overall 6DOF and gave its 

closed-form solution for forward and inverse position 

problems. The kinematics of hybrid type manipulation 

system with 6 DOF, which consist of a 3-DOF planar 

parallel platform and a 3-DOF serial robot arm, is 

discussed by Yang et al. [9]. Huang et al. [10] studied a 3-

DOF parallel robot which it is bottommost of a novel 5-

DOF hybrid mechanism. They designed mechanism 

conceptually and investigated dimensional synthesis of it. 

Liang Zhi et al. [11] studied a hybrid 5DOF manipulator 

based on the novel 3-RPS inactuated parallel manipulator. 

In their design a 2DOF serial working table is placed over 

the mobile platform. To analysis hybrid manipulators as a 

whole structure, Campos et al. [12] proposed a new 

method to construct  kinematic chains based on assure 

groups.
 
Gallardo et al. [13, 14] applied screw method and 

principle of virtual work to analysis kinematics and 

dynamic of a new hybrid mechanism known as  2-(3-

RPS). Also, kinematic analysis of a novel specific hyper-

redundant mechanism built with a variable number of 

serially connected identical mechanical modules with 

autonomous motions is addressed by  Gallardo et al. [15]. 

A new 6DOF hybrid mechanism as 3RPS-3SPR is 

investigated by Hu et al. [16]. They studied workspace 

analysis and inverse kinematics by jacobian methods and 

active forces by principle of virtual work. Li et al. [17] 

used a hybrid manipulator as a multi-dimensional 

vibration isolator based on the parallel mechanism. The 

scheme design, inverse kinematics, workspace and 

dexterity are carried out in their paper. Chen et al. [18] 

proposed a multi-objective genetic algorithm trajectory 

planner for a PKM, based on the dynamics approach. 

Ghanbari et al. [19] studied forward kinematic analysis of 

a new hybrid mechanism with two Stewart module by 

multi-layer perceptron (MLP) and radial bias function 

(RBF) neural network. 

In this contribution, in order to increase the size of 

workspace of parallel manipulators, a new hybrid 
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manipulator known as 2-(6UPS) is introduced which 

includes two same Stewart platforms in serial form. Then, 

mathematical model of kinematic analysis for 2-(6UPS) is 

extracted using principle of geometrical and vectorial 

analysis [20, 21]. It is well-known that because of 

nonlinear geometric relationship between kinematic 

variables, the solution of forward kinematics of this 

specific mechanism is too difficult. Therefore, a novel 

artificial neural network based on wavelet analysis is 

proposed to solve forward kinematics of 2-(6UPS). Also, 

we applied WNN to approximate specific trajectory in 

circle path with oscillating amplitude in z direction and 

spiral path with elliptical base paths for mid and upper 

platforms movement respectively and accurate results are 

obtained. 
 

MATERIAL AND METHODS 
 

Description of the hybrid robot 

The mechanism under investigation in this paper 

consists of two same modules (base and upper modules) 

that each module is Stewart Platform mechanism with 6 

DOFs. In this hybrid mechanism, we have three platforms 

and twelve pods. Base platform is stationary and 

connected to middle platform via 6 extensible pods. Also, 

middle platform is connected to upper platform (as an end 

effecter) via 6 extensible pods. Each pod connects to the 

platform at its connection point through a spherical joint, 

and to the base at its connection point through universal 

joint. Each pod consists of two parts: the upper part and 

the lower part, which connect to each other through 

prismatic joint. Therefore, it is referred to as the 2-(6UPS) 

mechanism. This manipulator is actuated by motors 

located on the prismatic joints. Figure 1 shows the design 

of the mentioned hybrid robot and structure of middle and 

upper plates. Cartesian coordinate frame is attached to 

each plate with z axis normal to the plate. 

 

Forward and inverse kinematics solution  

The mechanism under investigation in this paper 

consists of two same modules (base and upper modules) 

that each module is Stewart Platform mechanism with 6 

DOFs. In this hybrid mechanism, we have three platforms 

and twelve pods. Base platform is stationary and 

connected to middle platform via 6 extensible pods. Also, 

middle platform is connected to upper platform (as an end 

effecter) via 6 extensible pods. Each pod connects to the 

platform at its connection point through a spherical joint, 

and to the base at its connection point through universal 

joint. Each pod consists of two parts: the upper part and 

the lower part, which connect to each other through 

prismatic joint. Therefore, it is referred to as the 2-(6UPS) 

mechanism. This manipulator is actuated by motors 

located on the prismatic joints. Figure 1 shows the design 

of the mentioned hybrid robot and structure of middle and 

upper plates. Cartesian coordinate frame is attached to 

each plate with z axis normal to the plate. 

Forward and inverse kinematics solution  

Mechanism kinematics deals with the study of the 

mechanism motion as constrained by the geometry of the 

links. Typically, the study of mechanism kinematics is 

divided into two parts: inverse kinematics and direct 

kinematics. About mentioned hybrid robot, the inverse 

kinematics problem involves mapping a known pose 

(position and orientation) of the moving platforms of the 

mechanism to a length of each module’s pods. The direct 

kinematics problem involves the mapping from a known 

length of each module’s pods to a pose of the moving 

platforms. In this section the inverse and forward 

kinematics problems of proposed mechanism are 

described in closed form. 

 

 
Figure 1. Configuration of 2-(6UPS) hybrid manipulator 

and plates 

 

Figure 2 shows the vectorial representation of the thi  

pod at each module. According to fig. 2, the middle and 

upper moving platforms frame are shown by }{ m
O  and 

}{ u
O  respectively and base frame with }{ b

O .  

Also, ),,,,,( m
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m

y

m

x

mmm zyx   and ),,,,,( u

z
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present the location (position and orientation) of the 

middle and upper moving platform respectively. Now, the 

inverse kinematics of each module is obtained at first, and 

then forward kinematics is considered. Inverse Kinematic 

problem of the platforms involves determination of the 

linear position, of six Pods for each module through 

considering a specified position, of the middle and upper 

moving platforms centre.  

mY
mP3

mP2

mP1

mP4

mP5

mP6

mX

uX

uY

uP1

uP2

uP3

uP4

uP5

uP6



J. World. Elect. Eng. Tech., 4(1) 21-28, 2015 

 

Journal homepages: http://www.jweet.science-line.com/ 

23 

 

Figure 2. Vectorial representation of the
thi  pod at each 

module 

 

For each module, homogeneous transformation 

matrices from frame }{ u
O  to frame }{ m

O  and frame 

}{ m
O  to frame }{ b

O  are 
mu OO ,

H  and 
bm OO ,

H  respectively, 

and are described as: 
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Where )sin(,)cos(   SC .  

Beside, u

i

Om

L  and u

i
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L  are the vector of length of the 

thi  pod in upper module relative to 
m

O and 
b

O frame 

respectively. And, 
b

i

Ob

L  is the vector of length of the 
thi  

pod in base module relative to 
b

O frame. Vector of 

length of the 
thi  pod without considering modules and 

frames, is a 41  vector which is described as: 

),1L,L,L( iziyixiL .                                                (3) 

Also, 
u

i

m

ii PPb ,,  are the six vertices of the base, 
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Equations (7) and (9), define the length of pods of 

each module relative to base in a closed form. Mapping 

the pose of middle and upper plates to the length of pods 

is easy and straightforward. But, because of highly 

nonlinear characteristic of these equations, the mapping 

from a known length of each module’s pods to a pose of 

the moving platforms is so difficult and too much 

complicated. Therefore, wavelet based neural network 

(wave-net) is applied to solve forward kinematics of this 

mechanism. 

 

Wavelet Neural Network 

a. Structure of network: The wavelet neural 

network (WNN) is the model based on wavelet 

transformation and artificial neural network [22]. Due to 

wavelet transform has the good localization 

characteristics in time domain and neural networks has 

the good ability to approximate complicated maps, WNN 

incorporate the good learning ability and the good 

property of localization, which have been successfully 

applied in function approximation and pattern 

classification. Proposed neural network is established by 

conjunction of neurons in the forward direction.  

Because the approximation class is nonlinear in the 

adjustable parameters, the training procedure of the neural 

networks may become trapped in some local minimum 
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depending on the initialization. To overcome this 

problem, the wavelet networks have been proposed as an 

alternative to neural networks, which follow the 

availability of rates of convergence for approximation by 

wavelet based networks. 

In this section a feed forward single hidden layer 

network is introduced. For a (back propagation) BP neural 

network with only one hidden layer of neurons, using 

basis wavelets as its activate functions of hidden layer, we 

get a multi-input and multi-output wavelet neural 

networks in Fig. 3. 

This WNN has m, p, n nodes in the input layer, hidden 

layer and output layer respectively. And the activate 

function of the thj  node in the hidden layer is [23]:
  

pj
a

bt

a
t

j

j

j

ba jj
,...,2,1)(

1
)(, 


  .                  (10) 

 

Where, )(t  is the mother wavelet function which is 

localized both in time and frequency and could be chosen 

as different function according to the feature of the 

problem. In this paper we use Mexican Hat wavelet. This 

wavelet is derived from a function, which is proportional 

to the second derivative function of the Gaussian 

probability density function. It is non-orthogonal, with 

infinite support and has maximum energy around origin 

with the narrow band. The expression for Mexican Hat 

wavelet is given by Eq. (11). In this paper, )(tf  is chosen 

as sigmoid function. 

)exp().21()( 22 ttt  .                                        

 
The wavelet neural network parameters, 

),...,,,...,,,,,( 11

)2()1()2()1(

pp bbaaWW  in Fig. 3, should 

be adjusted through training. 

 

b. Training of network: Back propagation method 

is the most frequently used technique for training a feed 

forward network. It involves two passes across the 

network, forward and backward pass. The forward pass 

supply the network’s output performance and the 

backward implicates effluence the error initially found in 

the output node back across the network to specify errors 

for each node which contributed to the initial error. When 

all the errors are specified, for minimizing these errors the 

weights are changed. Since the WNN in Fig. 3 is derived 

from a feed forward neural network, we use back 

propagation method to train this network. For the WNN in 

Fig. 3, when the input vector is ),...,,( 21 mxxxX , we get 

the output of the thj  node in hidden layer: 
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From equation (19) we get the output vector of the 

WNN: ),...,,( 21 nyyyY . Suppose we have Q training 

samples. For each sample q, the desired output vector 

is ),...,,( 21 qnqqq yyyY , the output vector of the WNN is 

),...,,( 21 qnqqq yyyY . With these Q training samples, we 

train the WNN through batch learning process. Then the 

main goal for proposed network is providing minimum 

total error E for each output node i over all training 

samples [24]:        
 
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By the iterative gradient descent method, the 

parameters of the wavelet neural network can be 

formulated by: 

 

))1()()1()1(
)2(

)2()2()2(

ij

ijijij
w

E
twtwtw




  .     (17) 

)1(

)1()1()1( )1()()1()1(
jk

jkjkjk
w

E
twtwtw




   .    (18) 

)2(

)2()2()2( )1()()1()1(
i

iii

E
ttt






 .      (19)  

)1(

)1()1()1( )1()()1()1(
j

jjj

E
ttt






  .      (20) 

j

jjj
a

E
tatata




  )1()()1()1(  .               (21) 

j

jjj
b

E
tbtbtb




  )1()()1()1(  .               (22) 



















1
x

2
x

f
1

y

f
n

y

)2()2(W

)1(W

m
x

1,1 ba


2,2 ba


3,3 ba


bpap ,


)1(

 

Figure 3. Structure of WNN 
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Where t is the iteration index of learning and   is the 

learning rate. To improve the rate of learning, we modify 

the original learning rule with the momentum factor 

)10(    to the weights [25].
 
The partial derivatives 

of the error E respect to each parameter can be calculated 

easily. 

 

WNN solution for Kinematics of Robot 
In order to model forward Kinematics of hybrid robot 

with wave-net, according to structure of robot. We have 

modeled the base module and the upper, respectively. The 

input data of the network are the length of pods for each 

module. At first, using the length of pods of the base 

module, ),,,,,( 654321

bbbbbbb llllllL , we define the location 

(position and orientation) for mid platform, 

),,,,,( mmmmmmm zyxP  . Next, using the length of 

pods for upper module, ),,,,,( 654321

uuuuuuu llllllL , and the 

position and orientation of the middle plate, we calculated 

the location (position and orientation) for upper platform 

as an end effecter location, ),,,,,( uuuuuuu zyxP  . 

So, there will be two different and separate networks.  

For approximating the kinematics of hybrid 

manipulator, the algorithm of WNN is summarized as 

follows: 

Step 1: Set the initial values of networks 

parameters ),...,,,...,,,,,( 11

)2()1()2()1(

pp bbaaWW  , 

learning rate   and momentum factor  . 

Step 2: Input the training data and the desired output 

values. Give input vectors ),...,,( 21 mxxxX  where it is 

the length of pods of each module and a desired output 

vector ),...,,( 21 qnqqq yyyY , the theoretical values 

acquired from inverse kinematic solution of Eqs. (7) and 

(9). 

Step 3: For each input datum, calculate the output of 

the wavelet neural network by Eq. (14). 

Step 4: Adjust the networks parameters 

),...,,,...,,,,,( 11

)2()1()2()1(

pp bbaaWW   using gradient 

descent algorithm by Eqs. (17) to (22). 

Step 5: The error function E is calculated by Eq. (16). 

If the error is less than the desired bound, the networks 

parameters are obtained and the learning process is 

terminated, else go to step2. 

 

RESULTS 

 

In this section, we present the results of the proposed 

WNN on approximating the kinematic analysis of hybrid 

robot. The architecture was used for the wavelet network 

is one input layer with six neurons, one hidden layer with 

72 neurons and one output layer with six neurons. The 

network was trained with a learning rate of 0.17, a 

momentum term of 0.1, and 1,024 learning iterations. The 

largest error E or given precision is %1.  

Figures 4 to 7 show the results of the proposed WNN 

for the specific paths of middle and upper plates of hybrid 

robot. Results given here are for circle path with 

oscillating amplitude in z direction and spiral path with 

elliptical base path for center point of middle and upper 

plate, respectively. Using inverse kinematic analysis for 

proposed paths of plates, we define motions of each pod 

of each module (figures 4). Then, we feed the proposed 

WNN by the pods motions to get the paths of plates. 

Figure 5 shows the position paths and figure 6 shows 

orientation paths for center point of each plate.  Again, we 

used the outputs of the proposed WNN for inverse 

kinematic analysis to define the new motions of each pod 

of each module and compared them with the pods 

motions which results from CFS. Figure 7 show the 

results, for variation of length of each pods of base and 

upper module for circle path with oscillating amplitude in 

z direction for center point of mid plate with ])0,0,0([   

orientation and spiral path for center point of upper plate 

with ])0,sin,[cos*10(  tt   orientation. 

 

   (a)                      (b) 

Figure 4: (a) Variation of length of pods of base module for circle path with oscillating amplitude in z direction with 

Orientation ])0,0,0([  ; (b) Variation of length of pods of upper module for spiral path with Orientation ])0,sin,[cos*10(  tt    
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(a)                        (b) 

Figure 5: (a) spiral path with oscillating amplitude in z direction for Center Point of Mid Plate with Orientation; (b) Spiral Path 

for Center Point of Upper Plate with Orientation ])0,sin,[cos*10(  tt   

 

   
(a)               (b) 

Figure 6: (a) Orientation Path for Center Point of Mid Plate; (b) Orientation Path for Center Point of Upper Plate  

 

 

The results show good agreement between exact 

solution (CFS) and outputs of proposed WNN. Although, 

the accumulation of error for kinematic analysis of upper 

module, causes the error percentage in results of upper 

plate position and orientation is higher than mid plate. 

Accumulation of error for kinematic analysis of upper 

module is derived: 1- Network error; 2- Input error (the 

outputs of WNN for base module with error, are also 

fixed inputs for WNN for upper plates)  

 

CONCLUSION 

 

In this paper, a wavelet neural network which can be 

employed as a useful tool for nonlinear mapping problem 

has been proposed for solving direct kinematics of hybrid 

robot. The proposed network can be proved to have the 

capability of approximating any multivariable systems. 

Whereas, the kinematics model of hybrid robot has 

strongly nonlinear characteristic, the network can not only 

be trained in a short time, but also shows better 

performance in solving problems. According to the 

results, there is good agreement between WNN and CFS, 

but, because of accumulation of error, the error of results 

of upper plate is more than the error of the mid plate. 

Although, according networks tanning approach the 

maximum error for all cases is less than 1%.  
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(a)         (b) 

 

 

   
(c)         (d) 

 

       
(e)             (f) 

Figure 7: Length Variation of pods of base and upper module for circle and spiral path respectively with defined orientation 

change; (a), (c), (e) - for Base Module and (b), (d), (f) - for Upper Module 
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